

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 1 of 16

Building an R Script Tool

Tutorial Overview

The R-ArcGIS bridge is an effective way to make programs created for the R statistical software interoperable
with ArcGIS datasets, by providing the arcgisbinding package that allows ArcGIS datasets to be read and

written easily from the R programming language. Integration of these R programs is most effective when they are
implemented as script tools in an ArcGIS toolbox. Doing so makes input/output of datasets and numerical/text
parameter values seamless, and enables immediate visualization of feature classes and tables output by your
tools. R script tools can be further integrated into larger processes by incorporating them into ArcGIS Model
Builder workspaces, creating more advanced geoprocessing workflows.

This tutorial will introduce you to the process of developing R scripts that are ready to be executed as a script
tools from an ArcGIS. You will learn how to create and configure new script tools that execute the R scripts in an
ArcGIS Toolbox, and use those within ArcGIS Pro or ArcGIS Desktop applications.

Skills

By completing this tutorial, you will become comfortable with the following skills:

• Creating and debugging R scripts designed for use as script tools by ArcGIS applications

• Creating and configuring script tools in an ArcGIS Toolbox to execute R code

• Integrating R script tools into Model Builder workspaces

Time required

The following classroom time is required to complete this tutorial:

• 45 - 60 minutes

Materials Required

• Technology:

– R Statistical Computing Language (version 3.3.2+)

– RStudio Desktop (version 1.1.456+)

– ArcGIS Pro 1.1+ (2.2+ recommended) or ArcGIS Desktop 10.3.1+ (10.6.1+ recommended)

– R-ArcGIS Bindings (1.0.1.232+ recommended)

• Data:

– Data for this tutorial are included as part of the download in the packaged data folder.

Data Sources
• City of Toronto:

https://www1.toronto.ca/wps/portal/contentonly?vgnextoid=1a66e03bb8d1e310VgnVCM10000071d60f89RC
RD

• Toronto Police Service:
http://data.torontopolice.on.ca/pages/ksi

• Statistics Canada:
http://www12.statcan.gc.ca/census-recensement/2016/dp-pd/index-eng.cfm

https://www1.toronto.ca/wps/portal/contentonly?vgnextoid=1a66e03bb8d1e310VgnVCM10000071d60f89RCRD
https://www1.toronto.ca/wps/portal/contentonly?vgnextoid=1a66e03bb8d1e310VgnVCM10000071d60f89RCRD
http://data.torontopolice.on.ca/pages/ksi
http://www12.statcan.gc.ca/census-recensement/2016/dp-pd/index-eng.cfm

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 2 of 16

Production Date

The Education and Research Group at Esri Canada makes every effort to present accurate and reliable
information. The Web sites and URLs used in this tutorial are from sources that were current at the time of
production, but are subject to change without notice to Esri Canada.

• Production Date: October 2018

Background Information

The R user community has seen substantial growth in recent years, and is expected to continue growing due to
the increasing popularity of statistical data analysis. You can use R in conjunction with ArcGIS to develop tools
that can broaden the functionality of ArcGIS. Before you can create these tools, you need to develop an
understanding of how to work with the arcgisbinding package that is installed by the R-ArcGIS bridge.

Learning how to incorporate ArcGIS datasets into your R scripts to perform data analysis will greatly extend the
possibilities that exist for analyzing both spatial and non-spatial data.

R is different from many other programming languages, in that it was developed primarily for data analysis and
computational statistics. While the language and environment have evolved over the past two decades to
incorporate many other capabilities, this initial focus provides R with almost every statistical model and data
manipulation technique that you would need for modern data analysis. However, it can be a challenge to integrate
with other data types or software environments.

The arcgisbinding package resolves the challenge of working with ArcGIS datasets by introducing to R a set

of functions and classes that facilitate reading, writing, and manipulating ArcGIS datasets in the R programming
language. It further enables integration of R with ArcGIS software through the ability to create script tools in
ArcGIS toolboxes that execute R code.

By completing this tutorial, you will become familiar with the creation of R script tools in an ArcGIS Toolbox.
These R script tools execute functions in R that use the capabilities of the arcgisbinding package in

combination with the base R language and additional third-party packages. Using this approach, you will be able
to enhance the functionality of ArcGIS Pro or ArcGIS Desktop applications with advanced spatial and non-spatial
statistical analyses performed by scripts written in the R programming language.

References and Reading

• R-ArcGIS Bridge: full documentation for the arcgisbinding package

https://r-arcgis.github.io/assets/arcgisbinding.pdf

• R-ArcGIS Bridge: vignette for the arcgisbinding package

https://r-arcgis.github.io/assets/arcgisbinding-vignette.html

• R-Stats group on GeoNet
https://geonet.esri.com/groups/rstats

• R Statistical Computing Language
http://www.r-project.org/

• R-ArcGIS Sample Tools on GitHub
https://github.com/R-ArcGIS/r-sample-tools

• Coupled Human-Natural Systems (CHANS) Tools
https://github.com/R-ArcGIS/CHANS-tools

https://r-arcgis.github.io/assets/arcgisbinding.pdf
https://r-arcgis.github.io/assets/arcgisbinding-vignette.html
https://geonet.esri.com/groups/rstats
http://www.r-project.org/
https://github.com/R-ArcGIS/r-sample-tools
https://github.com/R-ArcGIS/CHANS-tools

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 3 of 16

Part A: Getting Started

To prepare for this workshop, you should have successfully completed the Getting Started, R Scripting Basics,
and R-ArcGIS Scripting tutorials. Completing the Getting Started tutorial will ensure that you have the required
software installed and configured. From the R Scripting Basics tutorial, should be familiar with the R and RStudio
software, and have the basic R scripting skills necessary to complete this tutorial. From the R-ArcGIS Scripting
tutorial, you should also be familiar with the functionality provided by the R-ArcGIS arcgisbinding package.

In this tutorial, everything discussed within the R environment can be completed using the default RGui installed
with R. However, the RStudio IDE will be used when referring to working with code in R scripts. In addition,
while both ArcGIS Pro and ArcGIS Desktop support the use of the R-ArcGIS bridge, and can execute R script
tools from ArcGIS toolboxes, this tutorial will mainly focus on using ArcGIS Pro (with significant differences
between the two environments noted as appropriate).

Setup

All of the resources required to complete this tutorial will be found in the files included with this document. To get
started, complete the following steps:

1. Open the r-arcgis-rstudio.Rproj file in RStudio

2. Open the File tab in the top-right panel (based on the layout options recommended in the R Scripting Basics
tutorial), navigate into the R/tools folder click on the file tool-template.R. The editor pane in RStudio

should display R source code for a template.

3. In the top-right corner of the source editor, you may click the maximize icon to toggle the maximized state
of the panel, and use as much screen space as possible to display the document's source code.

4. You may open one of the following files depending on which ArcGIS desktop software you are working with:

• ArcGIS Pro: r-arcgis-pro.aprx

• ArcMap (10.5.x+): r-arcgis-arcmap.mxd

• ArcMap (10.3.x=10.4.x): r-arcgis-arcmap-103.mxd

5. You will find that a pre-configured ArcGIS toolbox will be accessible when you have the project (or map
document open):

• ArcGIS Pro: in the catalog pane, an r-arcgis-pro.tbx will be listed in the Toolboxes category

• ArcMap: in the catalog pane, the r-arcgis-arcmap.tbx can be found in the home directory

Note: refer to "Part D" of the Getting Started tutorial if you need to review how to open a project file in ArcGIS
Pro, a map document in ArcMap, and/or how to locate toolboxes within these applications.

Part B: Creating the R Script

The primary component of an R script tool in ArcGIS is the R script. The data processing of the tool will be
performed using the R programming language. This enables you to use R to perform tasks inside the ArcGIS
environment that might not otherwise be possible. For example, users may want to calculate inferential statistics
on the tabular attribute data associated with a given feature class. Without using a custom tool (e.g., an R tool in
ArcGIS), this kind of analysis would typically involve exporting the data from ArcGIS to perform the data analysis
in a separate program (e.g., Microsoft Excel, SPSS, or R itself).

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 4 of 16

An R script must be created before a script tool can be configured in an ArcGIS toolbox that executes your R
functions. The tool-template.R script opened in the setup steps outlined in Part A provides an overview of

the main components of a script tool:

1. A function named tool_exec() serves as the entry point for your tool. This function is executed when a

script tool in an ArcGIS toolbox that is configured to run your script is executed as a geoprocessing task
in ArcGIS Pro or ArcGIS Desktop.

2. The tool_exec() function must accept two arguments to that will receive list objects containing input

and output parameters. These parameters are provided to the script tool by ArcGIS Pro or ArcGIS
Desktop when it is executed. By convention, these are usually named in_params and out_params

(though they can be named whatever you prefer).

3. The tool_exec() function must return the out_params when it completes.

Before returning the output parameters at the end of the tool's execution, the script must do the following.

1. Assign values to output parameters defined as simple string, numeric, or Boolean data types in the
configuration of a script tool.

2. Create datasets for each output parameter defined as feature class, tabular, or raster datasets. For
these, the path to use for each dataset is pre-defined in the value of the output parameter when it is
configured as Required or Optional in the script tool configuration. If the output parameter is configured
as Derived, then the script must create the corresponding output dataset and then assign the path text to
the output parameter value.

The arcgisbinding package provides two functions that allow you to set the label and state of the progress bar

displayed in the geoprocessing interface:

• arc.progress_label(<label>): Sets the text displayed with the progress bar

• arc.progress_pos(<pos>): Sets the progress bar to display the percent completed (with a value

between 0 and 100), or to show continuously animated progress indicator (using a value of -1).

Further information can be reported as messages, warnings or errors, which are displayed appropriately by the
geoprocessing interface in ArcGIS Pro or ArcGIS Desktop. This is done using the following base R functions:

• print(<text>) or message(<text>): Displays output as messages in the geoprocessing window.

• warning(<text>): Similar to print(), except that text is highlighted in the output, and a warning

indicator is displayed with the geoprocessing result.

• stop(<text>): This raises an error with the provided text in R. If the error is not captured in the tool's

code, the tool execution in R will stop, the error text will be displayed and highlighted in the geoprocessing
messages, and an error indictor is displayed with the failed geoprocessing result.

Unlike the progress bar label, the messages printed by these methods will persists in the geoprocessing results
after the tool has completed. This can provide more detailed information for users about the processed taking
place during the tool's execution. It is also useful to help troubleshoot while you are developing and testing the R
code when it is executed as a script tool by ArcGIS applications.

The steps for creating and configuring a script tool in an ArcGIS toolbox to execute an R script will be outlined in
Part C of this tutorial. The remainder of this section will focus on how to create and test a new R script in
preparation for its use as a script tool in ArcGIS Pro or ArcGIS Desktop.

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 5 of 16

Building a sample ANOVA script tool

We will create a sample tool that will accept an input dataset, rank records in quantiles based on a predictor
variable, and perform an ANOVA test on a response variable using the quantile ranks as a predictor. The tool will
output the ANOVA results, and optionally generate tables with of summary statistics and/or the results generated
by the ANOVA test.

Start by creating a new script in RStudio:

1. In RStudio, click the Create a New File dropdown button and select R Script. This will open a new
R scripting pane in the top left of the RStudio window.

2. Save the script as r-arcgis-anova.R in the R/tools folder located in the folder containing the files

for this tutorial.

3. Add the following code to define a tool_exec() function that accepts two arguments to receive input

and output parameters, and returns the output parameters as the result:

tool_exec <- function(in_params, out_params) {

 return(out_params)

}

Note: in the R script, it is not required to execute library(arcgisbinding) or call arc.check_product()

in order to make use of the functionality provided by the arcgisbinding package in the script's code. The

package will already be loaded and initialized in the current R session when the tool is executed by ArcGIS Pro
or ArcGIS Desktop from a script tool configured in an ArcGIS toolbox.

3. Insert the following code inside the tool_exec(), before the line that returns the output parameters.

This code begins by setting the label and position for the progress bar, loading the dplyr package, and

prints the names of the input/output parameters to the geoprocessing window. When this code is
executed by a script tool configured in an ArcGIS toolbox, printing the parameter names can help you
identify whether they are in the correct order and/or have the correct names that you expect to use in your
code:

 arc.progress_label('Loading required R packages...')

 arc.progress_pos(0)

 library(dplyr)

 print(paste0(

 'Input parameter names: `', paste(names(in_params), collapse = '`, `'), '`'

))

 print(paste0(

 'Output parameter names: `', paste(names(out_params), collapse = '`, `'), '`'

))

Note: This code above requires the dplyr package to be installed in your R environment. If you haven't already

done this, execute install.packages('dplyr') in the R console in RStudio to install it from CRAN via an

Internet connection.

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 6 of 16

4. Continue the script by inserting the following lines of code. In this part, we are obtaining the values
passed to the input parameters that are needed to execute the function, as well as the paths provided for
creating two output tables, and assigning them to regular variable names. We are also checking the
value of one of the parameters (predictor_groups) – if it is not defined, or less than two, our function

will default to a value of 2, and print a warning for the user.

 # Get input/output parameters

 in_data <- in_params$in_data

 response_var <- in_params$response_var

 predictor_var <- in_params$predictor_var

 predictor_groups <- in_params$predictor_groups

 anova_table <- out_params$anova_table

 stats_table <- out_params$stats_table

 if (is.null(predictor_groups) || predictor_groups == "NA" ||

 predictor_groups < 2)

 {

 warning("Defaulting to minimum of 2 predictor groups.")

 predictor_groups <- 2

 }

5. Next, insert the following lines of code to update the progress indicator. This section will read the input
dataset at the path specified by the in_data parameter, and filter it to include only records with non-null

values for the two fields specified by the response_var and predictor_var parameters.

 # Import data set to data frame

 arc.progress_label('Reading data...')

 arc.progress_pos(25)

 data <- arc.open(in_data)

 data_df <- arc.select(data, fields = c(response_var, predictor_var)) %>%

 filter_at(vars(c(response_var, predictor_var)), all_vars(!is.na(.)))

6. Continue with the following lines of code to add a predictor_rank column containing quantile ranks for

the number of quantiles specified by the predictor_groups parameter, group the data frame by rank.

 # Group data into quantiles using predictor field:

 grouped_df <- data_df %>%

 mutate(predictor_rank = ntile(data_df[[predictor_var]], predictor_groups)) %>%

 group_by(predictor_rank)

7. We can generate a box plot to display the differences in the response variable's distribution for each rank.
Without any additional code, this plot will appear be presented in a new window. It is possible to generate
the plot as an image file on disk, and return a path to the file as an output parameter (see the
R/tools/linearK.R script included with the tutorial files as an example):

 # Create box plot showing the response variable's distribution for each rank:

 boxplot(grouped_df[[response_var]] ~ factor(grouped_df$predictor_rank),

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 7 of 16

 ylab = response_var,

 xlab = paste(c('Group (', predictor_var, ')'),collapse=''))

8. We will expect the output stats_table parameter to be optional in a script tool configured to use this

function. With that in mind, the following code will check if a path was provided for the output parameter.
If so, a summary table will be calculated with the mean and standard deviation of the response and
predictor variables for each group, and written to the output table. Before writing the output, the results
will be explicitly passed through the data.frame() function to ensure it does not carry any spatial

properties (e.g., if the tool is executed with a feature layer or feature class as the in_data, instead of a

simple table).

 # Write summary statistics to table

 if (!is.null(stats_table) && stats_table != 'NA') {

 arc.progress_label('Calculating summary statistics for each group...')

 arc.progress_pos(50)

 summary_funcs <- c('mean', 'sd')

 summary_df <- grouped_df %>% summarize_at(

 vars(response_var, predictor_var),

 funs_(summary_funcs, args=list(na.rm = TRUE))

) %>% data.frame()

 arc.write(stats_table, summary_df)

 }

9. The next lines will perform the ANOVA analysis, and print the results in as message to be displayed in the
geoprocessing results:

 arc.progress_label('Performing ANOVA...')

 arc.progress_pos(75)

 anova_fit <- aov(grouped_df[[response_var]] ~ factor(grouped_df$predictor_rank))

 anova_results <- summary(anova_fit)

 print(anova_results)

10. If a path is supplied in the value of the optional anova_table parameter, then the results of the ANOVA

test will be written as a table:

 # Write ANOVA results to table

 if (!is.null(anova_table) && anova_table != 'NA') {

 # Change name of ranking variable label in output, and write to a data frame

 rownames(anova_results[[1]])[1] = predictor_var

 anova_df <- data.frame(anova_results[[1]])

 arc.write(anova_table, anova_df)

 }

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 8 of 16

11. Finally, we can update the progress indicator now that the process is done. Also ensure that the output
parameters are returned as the result of the function when the process is completed:

 arc.progress_label('Done')

 arc.progress_pos(100)

 return(out_params)

Testing your script in RStudio

At this point, your r-arcgis-anova.R script should be ready to be executed by a script tool that you can

configure in an ArcGIS toolbox. However, as you develop your scripts, it is more efficient and effective if you can
test and debug your script outside of the context of an ArcGIS script tool. In its current form, the script will not do
anything on its own. If executed as a standalone R script, it will define the tool_exec() function, but it won't

actually execute it.

In order to easily test your script, you can add an additional function that simulates executing your tool_exec()

function from script tool by loading the arcgisbinding package, performing any data or workspace preparation,

defining two list objects representing input/output parameter values, and then executing the tool_exec()

function. By placing this code inside another function, it will not interfere with the operation of a script tool that
uses it. When you need to test the function outside of the context of a script tool, you can temporarily add a
single line at the end of the script that executes your test function (Note: you must comment out the line that
executes your test before executing it from a script tool in ArcGIS, or it will fail to run).

Append the code below to the end of your script to add a test function, and to execute the test function on the last
line of the script:

Function to test in standalone R:

test_tool <- function(){

 # Load the arcgisbinding package...

 library(arcgisbinding)

 arc.check_product()

 temp <- getwd() # Substitute this with another location on disk if you like...

 out_dir = file.path(temp, "data", "ANOVASamples")

 if (dir.exists(out_dir))

 {

 unlink(out_dir, recursive=TRUE)

 Sys.sleep(1) # Wait one second, or the dir.create() method may fail...

 }

 dir.create(out_dir)

 tool_exec(

 in_params = list(

 in_data = "R/tools/CSDsJoined.lyr",

 response_var = "income2016csd.hh_low_income_percent_t",

 predictor_var = "income2016csd.income_median_t",

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 9 of 16

 predictor_groups = 5

),

 out_params = list(

 stats_table = file.path(out_dir, "summary_stats.csv"),

 anova_table = file.path(out_dir, "anvoa_results.csv")

)

)

 print(paste(c("Results saved to: ",out_dir), collapse=""))

}

Run the test_tool() function

test_tool()

In RStudio, you can now execute the script as a standalone R script. You can also add break points to aid with
debugging during execution. These are added (or removed) by clicking to the left of the line numbers displayed in
the left margin of the source code editor pane. Try adding a break point on the if statement immediately after

the boxlplot() command:

Now you can 'source' the script in the current R session by pressing CTRL+Shift+S. RStudio will exeucte the
code in the current R session, which will create the tool_exec() and test_tool() functions, and then run the

test_tool() function at the end of the script. The tool execution will pause when it reaches the line of code

where you enabled the breakpoint. This allows you to inspect variables in the Environment tab in RStudio, and
you can further execute additional commands at the current point in the code (e.g., to analyze or alter parameter
values). In this specific example, you may also view the plot that was generated by the boxplot() command on

the line right before the breakpoint by selecting the Plots tab in RStudio.

To continue running the code, you can press Shift+F5, or click the button that appears at the top of the
R console pane in RStudio. This will resume execution of the script from the line where the breakpoint was set.
It will stop again at any other breakpoints that you set, or when the function is completed.

Remember that you must comment-out the last line that executes your test_tool() function before proceeding

to use it with a script tool in ArcGIS Pro or ArcGIS Desktop that you will create in Part C of this tutorial. This may
be problematic if you forget to comment/uncomment the code when switching between RStudio and ArcGIS
environments. An alternative approach you can use is to wrap the command inside an if statement that only
executes the test function if a null value is found for the workspace property in the environment object provided by
the arcgisbinding package:

if (!exists("arc.env") || is.null(arc.env()$workspace)) {

 test_tool()

}

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 10 of 16

This will allow you to develop and test your R script both in RStudio, and also use it from a script tool executed in
ArcGIS Pro or ArcGIS Desktop without the need to comment/uncomment the line that executes your test code.

Sourcing external R scripts in your code

You can add extra functions to your script by defining them directly within the script tool, similar to the
test_tool() function you created to help test the application as a standalone R script. For example, you may

want to add a function like to the load_pkgs() method implemented in the sample helper-functions.R

script provided with the tutorial files. This function is helpful to ensure that any missing packages are installed
automatically from CRAN when your tool is executed (eliminating the need to ask users to pre-install libriaries).

It would make sense to source re-usable functions like the load_pkgs() function from shared script files.

However, when a script tool is executed from an ArcGIS toolbox, the current working directory in the R session
that loads your R script does not correspond to the actual file location of the R script on disk, which can make it
challenging to source files using relative paths. You can handle this with two different approaches:

• Source additional code by specifying hard-coded absolute paths to scripts in a known location on disk.

• Add an extra parameter to the script tool that represents the path to requires R source files.

The former option is easier, but it requires users of your tools to ensure that they either edit the script to change
paths, or place the required files in an identical folder location on their disk. The latter option is more flexible,
though it requires an extra parameter to run the tool. You can see an example of this implemented in the
R/tools/random-samples.R script included with the tutorial files. This tool requires an R sources parameter

that specifies the path to a folder that would contain required sources (in this case, it must be the R folder included

with this tutorial files, where the helper-functions.R script is located).

Part C: Creating the script tool in an ArcGIS toolbox

The last step for creating an R tool for ArcGIS is to create and configure a script tool in an ArcGIS toolbox. This
exposes your R code through the ArcGIS geoprocessing framework, which allows users to execute the code
using a GUI that integrates seamlessly with the ArcGIS Pro or ArcMap interfaces. It also allows your code to be
integrated into larger geoprocessing workflows in ArcGIS using Model Builder workspaces or ArcPy commands in
Python scripts.

In this section of the tutorial, you will create and configure a script tool that will execute the r-arcgis-anova.R

script that you authored during Part B of this tutorial (this script should be identical to the anova-tool.R

provided with the tutorial files – if necessary you can substitute with the provided script instead).

Begin by adding a new script tool the r-arcgis-pro.tbx toolbox in ArcGIS Pro or to the r-arcgis-

arcmap.tbx toolbox in ArcMap:

1. Open the the r-arcgis-pro.aprx project file in ArcGIS Pro or the r-arcgis-arcmap.mxd map

document in ArcMap (as outlined in the Getting Started section of this tutorial).

2. In the Catalog pane, navigate to the r-arcgis-pro.tbx toolbox (ArcGIS Pro) or to the r-arcgis-

arcmap.tbx (ArcMap). You may optionally right-click on a folder location, in the catalog pane and

create a new toolbox.

3. Right-click on the toolbox, and choose New > Script… (ArcGIS Pro) or Add > Script… (ArcMap)

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 11 of 16

4. In the dialog that appears:

• Enter an alphanumeric name for the tool (no spaces/special characters)

• Enter a descriptive label (the text that is displayed to a user).

In ArcGIS Desktop (ArcMap), you may also enter more detailed information in the tool
description in the dialog.

• Recommended: enable the option to store relative paths (so you can package the toolbox with
the R script and share it easily with other users)

In ArcGIS Desktop (ArcMap), click 'Next >' to continue.

• Specify path to the r-arcgis-anova.R script that you created in Part B of the tutorial.

5. You now must define the input/output parameters that must be passed to the tool_exec() function in

your script. In ArcGIS Pro, select the Parameters section on the left-hand side of the dialog. In ArcGIS
Desktop, click 'Next >' to proceed to the parameter configuration. Configure the following six parameters:

Name Label
(ArcGIS Pro only)

Data Type Type Filter

in_data Input Data Feature Layer * Required

response_var Response Variable Field Required Field**

predictor_var Predictor Variable Field Required Field**

predictor_groups Predictor Groups Long Optional

anova_table ANOVA Table Table Optional

stats_table Stats Table Table Optional

* In ArcGIS Pro, multiple data types can be used. For in_data, add Feature Class, Table and Table View types

** When the 'Field' filter is chosen, you are prompted for allowed field types. Select short, long, float and double.

Dialog prompts for creating a script tool in ArcGIS Pro (left) and AcGIS Desktop (right)

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 12 of 16

In the configuration of your script tool, you may provide user-friendly labels for your parameters in the ArcGIS Pro
environment. This is not possible in ArcGIS Desktop, in which case if you name your parameters with user-
friendly text (e.g., 'Input Data' instead of 'in_data'), the script tool will pass parameters with names based on the
user-friendly text (where spaces and special characters are replaced with underscores).

You can learn more about how script tool parameters may be configured from the corresponding documentation:

• ArcGIS Pro: http://pro.arcgis.com/en/pro-app/arcpy/geoprocessing_and_python/setting-script-tool-
parameters.htm

• ArcGIS Desktop: http://desktop.arcgis.com/en/arcmap/latest/analyze/creating-tools/setting-script-tool-
parameters.htm

Now that your script tool has been created and configured in the ArcGIS toolbox, you will see the tool's label listed
in the toolbox in the Catalog pane. Double-click on the tool - you will be prompted to define the parameters for
your tool. For an input parameter that requires a feature class, feature layer, or table, you will be able to select
compatible items in your current project or map document from the dropdown menu. You may also choose any
other dataset by typing the full path, or clicking the button to browse for datasets.

One of the advantages of using Feature Layer and/or Table View data types for input parameters is that you can
use datasets that have attributes from multiple sources joined to them, either as in the contents of your current
project or map document, or from ArcGIS layer files saved to disk (*.lyr or *.lyrx). In the ArcGIS Pro project file,
or the ArcMap map document, the CensusSubdivisions layer is pre-configured with a join to the table of data from
the 2016 census income statistics. When you select this file as the input dataset, you can choose from any of the
joined attributes.

Try executing the tool with the following parameters to test whether population density varies between census
subdivisions that are assigned quantile ranks based on percent of households classified as low-income:

You will see the boxplot that is generated by the script, as well as the raw ANOVA results printed in the
geoprocessing message window. In addition, the two tables generated by the tool can be found in the Contents
pane (in ArcMap, click the list by sources button above the table of contents). Right click on the stats_table

that was created, and click 'Open' to view its contents. You will find the mean and standard deviation calculated
for the response and predictor variables selected in the analysis above.

http://pro.arcgis.com/en/pro-app/arcpy/geoprocessing_and_python/setting-script-tool-parameters.htm
http://pro.arcgis.com/en/pro-app/arcpy/geoprocessing_and_python/setting-script-tool-parameters.htm
http://desktop.arcgis.com/en/arcmap/latest/analyze/creating-tools/setting-script-tool-parameters.htm
http://desktop.arcgis.com/en/arcmap/latest/analyze/creating-tools/setting-script-tool-parameters.htm

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 13 of 16

Integrating script tools into larger ArcGIS geoprocessing workflows

You can incorporate your tool into more complex geoprocessing workflows by adding it to a Model Builder
workspace:

1. Right-click on the toolbox in the Catalog pane, and choose New > Model

2. When the model workspace opens, click and drag your ANOVA script tool into the model workspace.

3. Double-click on the tool in the workspace, and populate the parameters as desired.

4. To expose any of your tool's parameters as variables within the workspace, you can right-click on the tool,
and choose Create Variable > From Parameter > <parameter name>.

5. To make the variables you exposed as parameter inputs for the Model workspace, right-click on the
variable, and enabled the Parameter option.

6. Add incorporate any other geoprocessing tools from the ArcGIS toolbox into your workspace as desired.

A sample model has been included in the toolbox provided with this tutorial. Right-click on the ANOVA (Filtered)
model, and choose Edit. You will see an example of the ANOVA script tool, with the Select Layer By Attribute
geoprocessing task incorporated. This task is configured to prompt for the input dataset, and an expression to be
defined by the user. The output is passed to the in_data parameter of the ANOVA script tool, with all other

parameters for the script tool exposed as parameters for the model workspace.

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 14 of 16

You can learn more about building model builder workspaces from the corresponding documentation:

• ArcGIS Pro: http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/modelbuilder/what-is-
modelbuilder-.htm

• ArcGIS Desktop: http://desktop.arcgis.com/en/arcmap/latest/analyze/modelbuilder/what-is-
modelbuilder.htm

Memory limitations in R

It is important to keep in mind that R loads all of its data objects and performs its processing in the computer's
available memory. Depending on the datasets you are using, the types of analyses you perform, and the total
RAM available for use by R on your computer, you may encounter limitations.

We can observe this issue with the Linear K Tool included in the toolbox provided with this tutorial. This tool
requires an input point dataset, and a polyline dataset representing a network that is associated with events
described by the point features. Using the linearK function available from the spatstat package in R, the

clustering of points along a network can be measured for a range of scales, and compared to theoretical
clustering values that would be expected under the condition of complete spatial randomness. Observed K
values that are higher than the theoretical values at each radius suggests clustering, while values below the
theoretical K value would suggest dispersion. Multiple simulations can be run to produce an envelope, where
values outside this envelop at a given radius could be argued to be significant deviations from complete spatial
randomness.

Double-click the tool, and executing it Linear K script tool using the KSI and CENTRELINE_WGS84 datasets.
These data represent traffic accidents and road centerlines for the entire city of Toronto (Note: this may run for 5
or so before it fails). The process in the script will convert the road centerlines into a spatstat linear network

object, and then use that with the KSI point features to produce a 'point pattern on linear network' object. This is
used as the input data for the linearK function. When the tool is executed using the complete datasets for all of

Toronto, the tool will likely fail with a message as follows:

http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/modelbuilder/what-is-modelbuilder-.htm
http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/modelbuilder/what-is-modelbuilder-.htm
http://desktop.arcgis.com/en/arcmap/latest/analyze/modelbuilder/what-is-modelbuilder.htm
http://desktop.arcgis.com/en/arcmap/latest/analyze/modelbuilder/what-is-modelbuilder.htm

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 15 of 16

It is not likely that a PC you are using for this tutorial with be equipped with sufficient RAM to perform this analysis
(and likely the process would take a very long time to complete). Thus, it is important to keep these constraints in
mind as you develop your R code and use R script tools in ArcGIS

To see a successful result from the Linear K script tool, you can limit the features input into this dataset by
selecting a subset of points/lines in both layers for a given area on the map. When the tool is executed, the
default behaviour of the arc.select() function from the arcgisbinding package will limit the features read

into the R workspace to only those that are selected on the map.

You may also try executing the Linear K tool using the KSI_byc and CENTRELINE_WGS84_byc feature layers,
which are pre-configured subsets of both datasets that include only features within the neighbourhood boundaries
of the Bay/Yonge/Church corridor.

Exercise

At this point, you are now able to create and test custom analytical functions in R scripts that use the
arcgisbinding package from the R-ArcGIS bridge, and that are compatible for use as script tools in an ArcGIS

toolbox. You have also learned how to create and configure new script tools in an ArcGIS toolbox that define
parameters and execute functions in specially-constructed R scripts, and how to incorporate those into larger
geoprocessing workflows using Model Builder.

To test your skills, try the following:

• Review the R/tools/random-samples.R script, and test it by executing the Random Samples script

tool that is included in the pre-configured toolbox provided with this tutorial. Once you are familiar with
what the script does and how it works, review the documentation for the spsample() method provided

by the sp package in R. Note that there are several types of random sampling methods (controlled by the

type parameter).

o Add a parameter to the Random Samples script tool to allow allows a user to select one of the
available methods (note, the Fibonacci sampling method may not work).

o Update the random-samples.R script to read this additional parameter and provide it as the

type argument to the spsample() method.

• Review the R/tools/linearK.R script used by the Linear K script tool discussed earlier. Run the tool

with the KSI_byc and CENTRELINE_WGS84_byc datasets included in the project / map documents (i.e.,

the subsets of traffic accidents and road centerlines for the Bay/Yonge/Church corridor in Toronto).
o Note that the results from the linear-K analysis suggests clustering is higher than what is

expected from the theoretical K value at all radii.
o Review the point features on the map and the attribute table for the KSI.shp dataset in detail in

ArcGIS Pro or ArcMap. You will notice many coincident points at each location (i.e., a point for
each party involved in a traffic accident).

o Update the parameters in the Linear K script tool to allow a user to choose a field in the input
point features that can be used to identifies distinct events.

Tutorial for ArcGIS Pro 2.2 / ArcGIS Desktop 10.6.1
Building an R Script Tool

highered@esri.ca hed.esri.ca Page 16 of 16

o Revise the code in the linearK.R script to read the new parameter, and use values in the

corresponding field to reduce the number of points used in the linear-K analysis to include only
distinct events (Hint: there is an event identifier code in the KSI datasets…and the
dplyr/spdplyr packages provide a distinct() method that may be helpful).

o As discussed earlier, this Linear K tool cannot function when executed using the complete
datasets for all of Toronto. Try incorporating the Linear K script tool into a Model builder
workspace. In this workspace, add the Select Layer by Attribute tool, expose its inputs as
parameters for the model, and use its output layer variable to perform a two Select Layer by
Location processes, one on each of the layers input. The tool should allow a user to use the
Toronto neighbourhood boundaries feature layer with a query expression to choose which
neighbourhoods to include in the analysis.

Future Considerations

R is a powerful tool with an abundance of resources that can be drawn upon to extend the functionality of ArcGIS.
This tutorial has outlined the process of building a basic R script that can be used as a script tool that can be
seamlessly integrated into geoprocessing workflows in ArcGIS Pro and ArcGIS Desktop. You should continue
to experiment and create your own R tools for ArcGIS using the procedures you have learned in this tutorial.

http://hed.esri.ca

© 2018 Esri Canada. All rights reserved. Trademarks provided under license
from Environmental Systems Research Institute Inc. Other product and
company names mentioned herein may be trademarks or registered
trademarks of their respective owners. Errors and omissions excepted. This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License.

http://hed.esri.ca/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

